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A new current block routine has been written that offers a simple and accurate method of 
describing solenoid fields in ICOOL. Blocks are convenient because (1) there is a one-to-one 
correspondence between these elements and physical magnet coils, (2) the current density can be 
entered directly in amps/mm2, and (3) one can avoid infinities that arise from asking for field 
points at arbitrary locations in the conductor. We have found that the new routine generates fields 
in the beam aperture with relative field accuracy ~10-3 at the worst spots and considerably better 
over most of the aperture. The accuracy is also fairly good in the conductor region, except for the 
area in the immediate vicinity of the conductor edges. 
  
 
 
1.  Introduction 
 
The most realistic solenoid modeling in ICOOL gets the magnetic field from sets of 
individual conductors. Three types of azimuthally symmetric conductor are available. 
The “coil” is a wire with zero thickness. The “sheet” has a finite length, but zero radial 
thickness. The “block” has both finite length and thickness. It is most convenient to 
describe a solenoid using blocks because (1) there is a one-to-one correspondence 
between these elements and physical magnet coils, (2) the current density can be entered 
directly in amps/mm2, and (3) one does not have to worry about infinities from asking for 
a field point at certain locations in the conductor, as one does with the coil and sheet 
elements. However, most previous modeling has been done using sheets because the  
block routine currently used in ICOOL gave less accuracy. In this note we quantitatively 
compare the accuracy of modeling a solenoid using coils, sheets and blocks. We 
introduce a new algorithm for computing the field of a block conductor. This new model 
gives similar accuracy to the sheet model and thus should become the standard technique 
for accurate solenoid modeling in ICOOL.  
 
 



2.  Magnetic field equations 
 
In this section we present the equations for finding the magnetic field from coil, sheet and 
block conductors. Simple equations are given for the field at the center of a solenoid in 
each case in order to check for proper normalization. We also describe the new algorithm 
for finding block fields. 
 
2.1  Coil conductor 
 
Circular current loops have been used as the default solenoidal conductor element in 
other programs, for example INTMAG [1].  Consider a circular coil with radius a 
carrying a current I. If we locate the origin of a cylindrical coordinate system at the center 
of the coil, the axial field Bo at the origin is 
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where µo = 4π 10-7 is the permeability constant. For (r,z) points off the symmetry axis the 
field can be written [2] 
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where K(k) and E(k) are complete elliptic integrals with argument 
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and the parameter ζ is 
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2.2  Sheet conductor 
 
Solenoids are described by current sheets in other programs, for example RAYTRACE 
[3]. Consider a circular sheet with radius a and length 2L carrying a current per unit 
length I’. If we locate the origin of a cylindrical coordinate system at the center of the 
sheet, the axial field at the origin is 
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For (r,z) points off the symmetry axis the field can be written [3,4] in terms of elliptic 
integrals. Let us define the functions 
 

( ) ( )

( )[ ]

( )2

2

4

)()()(2
4

),(

)(),(
2

)(),(

ra
arc

kKkkEkK
r

Izrb

kKck
a

rakK
ra

zaIzrb

o
r

o
z

+
−=

−−
′

=

⎥⎦
⎤

⎢⎣
⎡ −Π

−
+

+
′

=

ζ
π
µ

ζπ
µ

 

 
where Π(k,c) is a complete elliptic integral of the third kind. The magnetic field from the 
sheet is given in terms of these functions by 
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2.3  Block conductor 
 
If we locate the origin of a cylindrical coordinate system at the center of the block, the 
axial field at the origin is  
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where 2L is the length of the block, a1 (a2) is the inner (outer) radius and J is the current 
density. 
 
An analytic solution for the field from a solenoidal block conductor does not appear to 
exist. The present block model [5] in ICOOL makes use of the vector potential for a 
planar current loop. In order to obtain an expression that can integrated axially and 
radially to make a block, the vector potential is elegantly approximated in a series that 
can be integrated term by term. The field components can then also be written as series of 
functions found from this approximate vector potential. We will refer to this algorithm as 
BLOCK-S (for series) in the following discussion. 
 
The new block algorithm discussed here takes the current sheet solution as its starting 
point. The radial integration is done numerically using a 10-point Gaussian quadrature 
procedure. This is an “open” method that does not require evaluation of the function at 
the end points of the integration.  When the field point is inside the conductor the radial 
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integration is broken into two or more regions with a boundary at the radial position of 
the field point. This guarantees that the field point never coincides with the location of 
any of the sheets used in the integration. We will refer to this algorithm as BLOCK-I (for 
integration) in the following discussion. 
 
 
3.  Solenoid model 
 
We now set up a test example so that we can test the accuracy of the various routines for 
calculating the field. Consider a solenoid 1 m long and 1 m in diameter. The conductor is 
located in the axial region ±50 cm and the radial region 50<r<60 cm. Fig. 1 shows the 
layout.  

beam aperture

conductor

 
 
Figure 1.  Layout of the solenoid test example. 
 
We also identify two regions in Fig. 1 that will be used in the subsequent analysis. The 
“beam aperture” region is the region where the field quality needs to be good enough for 
particle tracking. We define this region to extend from the axis to 80% of the inner radius 
of the conductor. In practice some of the excluded region must anyway be taken up by 
insulation, support tubes, cryogenics and beam tubes. The second “conductor” region will 
be used to study the field behavior nearby and inside the conductor itself.  
 
For the coil model the conductor region is approximated by 100 x 10 coils with 1 cm 
spacing. The nearest coil is 0.5 cm from the actual boundary of the conductor region. For 
the sheet model the conductor region is approximated by 10 sheets with 1 cm spacing. 
The sheets were 99 cm long, so again the nearest portion of a sheet is 0.5 cm from the 
actual boundary of the conductor region. The block models used blocks the same size as 
the conductor region. The current in each of the models was adjusted to give the same 1 T 
field at the center of the solenoid. 
 
The field quality for the models was tested by examining the appropriate 2-dimensional 
Maxwell equations for div B 
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and curl B 
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3.1  Field quality in the beam aperture 
 
For each of the models an (r,z) field grid was made with 1 cm spacing. Fig. 2 shows the 
field distribution on the grid. The field is mostly axial on this grid, except for the upper 
right corner nearest the end of the conductor. 
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Figure 2.  Magnetic field distribution in the beam aperture. 
 
In the beam aperture we have J = 0 in the curl relation. Table 1 gives a summary of the 
field quality results. 
 

Table 1:  Field quality in beam aperture region 
model div B 

[G/m]  
r1 [cm] z1 [cm] curl B 

[G/m] 
r2 [cm] z2 [cm] time [s] 

coil 53 39 50 36 39 56 23.33 
sheet 52 39 49 36 39 55 0.94 
block-S 3471 39 50 4313 39 40 0.15 
block-I 53 39 50 36 39 56 1.88 
 
The second column lists the maximum error in div B on the grid. The maximum error 
occured at the location (r1,z1). Likewise the fifth column gives the maximum error in 
curl B which occurred at the location (r2,z2). The last column gives the execution time 
required to compute field at the 41 x 101 grid points. All the models give similar 
accuracy, except for the BLOCK-S model, which is substantially worse. We see that the 
maximum error occurs at the maximum radius used in the Maxwell equation grid, closest 
to the conductor. The peak error in div B is directly below the end of the conductor, while 
the peak error in curl B is more distributed longitudinally. This can also be seen in Figs. 3 
and 4, which show contour plots of the error distributions. 
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Figure 3.  Error contours for div B in the beam aperture. 
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Figure 4.  Error contours for curl B in the beam aperture. 
 
The errors in div B and curl B are essentially gradient errors δg in the field. Using a 
maximum error δg ~50 G/m, the maximum relative field error on the grid is then 
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The accuracy is much better near the axis, where δg ~1 G/m near the end of the 
conductor, and better still near the center of the solenoid, where δg ~0.01 G/m . 
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3.2  Field quality in the conductor region 
 
For each of the models another (r,z) field grid was made for the conductor region with 1 
cm spacing. Fig. 5 shows the field distribution on the grid. The field reversal takes place 
in the upper part of the conductor. 
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Figure 5.  Magnetic field distribution in the conductor region. 
 
Table 2 gives a summary of the field quality results. 
 

Table 2:  Field quality in the conductor region 
model div B [T/m] r1 [cm] z1 [cm] 

coil 1.85 60 49 
sheet 1.11 60 49 

block-S 3.87 51 50 
block-I 1.15 51 50 

 
We only list the div B errors here because of problems calculating curl B on the 
conductor edge, which we discuss below. Note that the units on the div B error are in T/m 
here. We see that the maximum error occurs at either the upper or lower corner at the end 
of the conductor. None of the models can give an accurate value for the field at these 
locations. This can also be seen in Figs. 6 and 7, which show contour plots of the error 
distributions. 
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Figure 6.  Error contours for div B in [T/m] in the conductor region. 
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Figure 7.  Error contours for curl B in [T/m] in the conductor region. 
 
Note in Fig. 7 that the error in curl B is small both outside and inside the conductor, but 
that it spikes along the immediate edge of the conductor. It is likely that this comes from 
not properly accounting for the magnitude of J when calculating the curl B relation in this 
case. Further improvements in the algorithm would be necessary if it is important to 
accurately determine B for this case. 
 
 
4.  Conclusions 
 
The new BLOCK-I routine offers a simple and accurate method of describing solenoid 
fields in ICOOL. The method has essentially taken the past practice of summing sets of 
radial sheets and incorporated it into an easier-to-use package. We have found that these 
routines generate fields in the beam aperture with relative field accuracy ~10-3 at the 
worst spots and considerably better over most of the aperture. The accuracy is also fairly 
good in the conductor region, except for the area in the immediate vicinity of the 
conductor edges. 
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The BLOCK-I routine gives much better results than the BLOCK-S routine presently 
used in ICOOL. This is probably because only 9 terms are used in the series expansion 
and the convergence is fairly slow. 
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